ezyquant.reader.SETDataReader.get_data_industry_daily#
- SETDataReader.get_data_industry_daily(field: str, industry_list: List[str] | None = None, start_date: str | None = None, end_date: str | None = None) DataFrame #
Data from table DAILY_SECTOR_INFO. Filter only industry data.
- Parameters:
field (str) –
prior
open
high
low
close
trans
volume
value
mkt_pe
mkt_pbv
mkt_yield
mkt_cap
turnover
share_listed_avg
beta
turnover_volume
12m_dvd_yield
industry_list (Optional[List[str]] = None) – N_SYMBOL_FEED in industry_list. More industry can be found in ezyquant.fields
start_date (Optional[str] = None) – start of trade_date (D_TRADE).
end_date (Optional[str] = None) – end of trade_date (D_TRADE).
- Returns:
industry: str as column
trade_date: date as index
- Return type:
pd.DataFrame
Examples
>>> from ezyquant import SETDataReader >>> from ezyquant import fields as fld >>> sdr = SETDataReader() >>> sdr.get_data_industry_daily( ... field=fld.D_INDUSTRY_CLOSE, ... industry_list=[fld.INDUSTRY_AGRO, fld.INDUSTRY_FINCIAL], ... start_date="2022-01-01", ... end_date="2022-01-10", ... ) AGRO FINCIAL 2022-01-04 485.98 182.10 2022-01-05 484.98 183.50 2022-01-06 482.90 181.39 2022-01-07 484.50 182.81 2022-01-10 487.10 182.79