ezyquant.reader.SETDataReader.get_data_sector_daily#

SETDataReader.get_data_sector_daily(field: str, sector_list: List[str] | None = None, start_date: str | None = None, end_date: str | None = None) DataFrame#

Data from table DAILY_SECTOR_INFO. Filter only sector data.

Parameters:
  • field (str) –

    • prior

    • open

    • high

    • low

    • close

    • trans

    • volume

    • value

    • mkt_pe

    • mkt_pbv

    • mkt_yield

    • mkt_cap

    • turnover

    • share_listed_avg

    • beta

    • turnover_volume

    • 12m_dvd_yield

  • sector_list (Optional[List[str]] = None) – N_SYMBOL_FEED in sector_list. More sector can be found in ezyquant.fields

  • start_date (Optional[str] = None) – start of trade_date (D_TRADE).

  • end_date (Optional[str] = None) – end of trade_date (D_TRADE).

Returns:

  • sector: str as column

  • trade_date: date as index

Return type:

pd.DataFrame

Examples

>>> from ezyquant import SETDataReader
>>> from ezyquant import fields as fld
>>> sdr = SETDataReader()
>>> sdr.get_data_sector_daily(
...     field=fld.D_SECTOR_CLOSE,
...     sector_list=[fld.SECTOR_AGRI, fld.SECTOR_BANK],
...     start_date="2022-01-01",
...     end_date="2022-01-10",
... )
              AGRI    BANK
2022-01-04  296.13  421.31
2022-01-05  297.66  423.08
2022-01-06  299.85  417.30
2022-01-07  300.12  421.00
2022-01-10  306.93  423.81